FLP/FRT Recombination from Yeast: Application of a Two Gene Cassette Scheme as an Inducible System in Plants
نویسندگان
چکیده
Phytosensors are plants that are genetically engineered for sensing and reporting the presence of a specific contaminant, including agriculturally important biological agents. Phytosensors are constructed by transforming plants to contain specific biotic- or abiotic-inducible promoters fused to a reporter gene. When such transgenic plants encounter the target biotic or abiotic agent, the specific inducible promoter is triggered and subsequently drives the expression of the reporter gene, which produces a signal for detection. However, several systems lack robustness, rapid induction and promoter strength. Here, we tested the FLP/FRT recombination system in a construct containing a two gene cassette organization and examined its potential in transgenic Arabidopsis and tobacco plants using a β-glucuronidase (GUS) reporter. In this model system, a heat-shock inducible promoter was employed to control the expression of the FLP recombinase gene. Upon heat induction and subsequent active FLP-mediated excision event, the GUS gene was placed in close proximity to the 35S promoter resulting in an active GUS reporter expression. Our results demonstrate that the two gene cassette scheme of inducible FLP/FRT recombination system is functional in tobacco and Arabidopsis, providing additional insights into its possible application in phytosensing such as creating strong readout capabilities.
منابع مشابه
Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites
As a tool in directed genome manipulations, site-specific recombination is a double-edged sword. Exquisite specificity, while highly desirable, makes it imperative that the target site be first inserted at the desired genomic locale before it can be manipulated. We describe a combination of computational and experimental strategies, based on the tyrosine recombinase Flp and its target site FRT,...
متن کاملFLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori
A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In th...
متن کاملApplication of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae†
The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/F...
متن کاملFLP-mediated recombination of FRT sites in the maize genome.
Molecular evidence is provided for genomic recombinations in maize cells induced by the yeast FLP/FRT site-specific recombination system. The FLP protein recombined FRT sites previously integrated into the maize genome leading to excision of a selectable marker, the neo gene. NPTII activity was not observed after the successful recombination process; instead, the gusA gene was activated by the ...
متن کاملDevelopment of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision
Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants w...
متن کامل